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Let ad R be the graph obtained by joining all sites of Z a which are separated by 
a distance of at most R. Let/z(~R) denote the connective constant for counting 
the self-avoiding walks in this graph. Let 2(~) denote the coprresponding 
constant for counting the trees embedded in ~R. Then as R--* ~,  g(~R) is 
asymptotic to the coordination number ks of f#R, while 2(~ R) is asymptotic to 
ek n. However, if d is 1 or 2, then/t(adn) -kR diverges to -oo. 

KEY WORDS: Self-avoiding random walk; connective constant; mean-field 
behavior; trees; polymers. 

1. I N T R O D U C T I O N  

The following quantit ies arise in connect ion with the study of polymers 
with excluded volume effects. For  a periodic graph in d dimensions, i.e., a 
t ransla t ion- invar iant  graph f9 with vertex set Z a, let c , (~ )  denote the 
number  of n-step self-avoiding walks  in the graph ~ starting from the 
origin. See, e.g., Madras  and Slade. (~6) Let t,,(f~) denote the number  of dis- 
tinct trees with n edges and with the origin as a vertex, which can be 
obtained as subgraphs of fg. A lattice tree can be used as a model for a 
branched polymer; see refs. 19 and 12 and references therein. 

The sequence c . ( ~ )  is submultiplicative (i.e., c . + , .  <~ c,,c.,  for all n, m). 
Also, ( n - ' t . ( q # ) )  is a supermul t ip l i ca t i ve  sequence, ('2) and by well-known 
arguments  (5'~6) there exist limits 

p(fr :=  lira (c . ( f# ) )  I/" = inf(c.(f#)) l/" (1) 
n ~ ~ n 

2(f~) := lim (t,,(cff)) l/n (2) 
n ~  ((3 
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(the symbol :-- denotes definition). The constants I t ( f )  and 2(G) are 
measures of the richness of the connective structure of the latice f ,  as is the 
critical point for bond percolation on f ,  which we denote pc(f) .  

When f is the two-dimensional hexagonal lattice, Nienhuis (~7) has 

argued (nonrigorously) that i t (G)=(2+x /~ )  ~/2. Aside from this case, the 
exact values of i t ( f )  and 2 ( f )  are unknown for nontrivial graphs f .  This 
fact has motivated the study of these quantities for the nearest-neighbour 
graph Z d in the mean-field limit d--*oo,  t2"6"9-11) For example, it is 
known (~Lg) that as d--, oo, 

p (Z  d) = 2 d -  1 - ( 2 d )  -~ - 3(2d) - 2 -  16(2d) -3 - 102(2d)-4 + O(d -5) (3) 

In this paper we consider a different mean-field limit, one which is 
easier to interpret physically. For R > 0, let fR denote the graph on Z d 
whose edges are those (x ,y)  with 0 <  [[x-y[[ ~<R. Here []'H denotes an 
arbitrary fixed norm on ~d. We shall consider the quantities It(fR) and 
it(fiR) in the limit R---, oo with d fixed. We shall call this the spread-out 
limit. It is analogous to the "van der Waals limit" (or "Kac limit") 
considered by Lebowitz and Pen rose/15) 

Let ~ denote the complete (rooted, labeled) k-ary tree (Bethe 
lattice)/3'14) Let bb(k ) denote the number of subtrees 0 of ~ with n edges 
(and hence with n + 1 nodes) such that one of the nodes of 0 is the root 
of ~k. Then (14) 

(k(n + 1 )'] 1 (4) 
b , ( k ) = \  n + l  ] ( k - l ) ( n + l ) + l  

By Stirling's formula, 

k k 
lim (b,,(k)) 1/" - (k - 1 )k-] := r(k) (5) 

n ~ o c ,  

Observe that r ( k ) ~  ek as k--, oo. Here and below, the symbol ~ means 
the ratio of the two sides approaches 1. 

For any periodic graph ff let k(ff) denote the coordination number 
(i.e., the degree of a given vertex), so, for example, if d =  1 with the usual 
norm, then k(ffR)= 2[R] .  One has mean-field upper bounds for p(ff) and 
2 ( f )  by the corresponding quantities for the complete k ( f ) -a ry  tree: 

It(~) ~< k(f); 2(~) ~< r(k(f)) (6) 

We shall prove here that in the spread-out limit, P(ffR) and 2(fiR) are 
asymptotic to these upper bounds. We use the abbreviation kR :=k(ffR). 
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Also, c denotes a positive finite constant which may vary from line to line 
(not to be confused with cn). 

Theorem 1. Let d~>l. Then for some constant c > 0  and some 
Ro > 0, 

kR>~p((~R)>~kR--ck~71og(kR), R>>.R o (7) 

In particular, /l(~R),-~k R as R ~  oo. 

Theorem 2. Let d>~l. Then for some constant c > 0  and some 
Ro>0,  

r(kR) t> 2(fgR)/> r(k R) - -  ckS/R7 1og(kR), R 1> R o (8) 

In particular, )-(~R) ~ r(kR) as R ---, oo. 

Some cases of Theorem 1 were already known. For d~> 2, the spread- 
out limit for the bond percolation threshold pc(~) was considered in 
ref. 18, where the asymptotic result pc(~R)~ 1/kR was established. The 
result P(fgR) ~ kR (for d>~ 2) is immediate from this, together with (6) and 
the inequality (4) 

p(~)  >1 l/pc(CS) (9) 

Also, for d > 4 ,  Madras and Slade (ref. 16, Corollary 6.2.7) have a better 
lower bound than (7), namely that for any s > 0 there exists c > 0 such that 
P(fgR)>~kR-ck~ § for all large enough R. However, the proof here is 
simpler than either of these, and works for all d/> 1. 

By analogy with Eq. (3) one might aim in the spread-out limit for an 
expansion of/~(~R)--kR in powers of kR. For d~< 2, the next result shows 
that any such expansion must have as leading term a positive power ofkR. 

Theorem 3. 
R >~ Ro, 

There are positive constants c and Ro such that for 

iz(~R)<~kR-ck~ 5 if d =  1 (I0) 

p(~R)<~kR--clog(kR) if d = 2  (11) 

For the case d~>3, we conjecture that kR--/l(c~R) converges in the 
spread-out limit to the expected total number of vists to the unit ball (of 
I1" II ) by a random walk in ~d  with steps uniformly distributed over the unit 
ball. When d > 4 ,  the lace expansion developed by Hara and Slade t6-8) 
should be highly relevant to this problem. See in particular ref. 16, 
Chapter 6. 
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Note that from (11 ), together with (9), we have for d =  2 that for some 
constant c and all large enough R, 

Pc( f~R) >1 (1/kR) + c(log k R)/k~ (12) 

The next section contains the proofs. Section 3 will describe related 
models for which similar results hold. These include lattice annimals, and 
models with excluded volume effects along the edges of the walk or tree, 
not just at the vertices. These last models exhibit dimension dependence 
not apparent in Theorems 1 and 2. 

2. P R O O F S  

In these proofs we shall for convenience take II. II to be the L~ 
I[(x ~ ..... xd)II =maxi  Ixq. The modifications to other norms are straight- 
forward for Theorems 1 and 2, and should also be true for Theorem 3 [ see 
the remark following Eq. (40) below]. Let f ~  denote the graph with vertex 
set Za/R := {x/R: x e Z  a} and with edge set {(z~,z2): 0 <  IIz~-z211 ~< 1}. 
This is clearly isomorphic to (#R. 

Let V(i), i = 1 , 2 , 3  ..... denote independent identically distributed 
(i.i.d.), ~d-valued random variables with V(i) uniformly distributed on the 
unit ball of II "11. Similarly, for R> ' I  let VR(i), i =  1, 2, 3,... denote i.i.d. 
discrete variables which are uniformly distributed on { z ~ Zd/R: 
0 < Ilzll ~< 1 }, the sites joined to 0 in ~ .  Define the random walk paths 

S(m) = ~ V(i), SR(m) = ~.. VR(i), m = 1, 2, 3 .... (13) 
i = l  i = 1  

Given an open set in ~a, for R large the probability that SR(n) lies in 
that set decays rather slowly as n becomes large, by the Local Limit 
Theorem. This idea is the basis of the following lemma. 

Lemma 1. For j = 0 ,  1,2 .... let Aj denote the slab 

Aj := { (x I ..... xa)~ ~a: j - - (1 /2)  < x  I ~<j+ (1/2)} (14) 

Then there exist R~ >-3 and y~(0,  1] such that for all R>-R~, 

P[xo+SR(m)~Aj+l]>-2ym -w2 forall xo~Ay, m>-l  (15) 

Remark. We take R ~ t> 3 so as to use the comment after (18) below. 

Proof. It suffices to consider the case j =  0. Let K be an integer with 
K>'98rt 1/2. Write VR in coordinates as (V~ ..... Vd). Similarly, for 1 <~i<~d 

" denote the ith coordinate of V, SR, and x o respectively. let V ~, S~, and x o 
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For all R, E[V~]=O. Set a ~ ' = E [ I V ~ [  2] and p,,~:=-g[lV~]3]. Since 
E[[ V~] 2] = 1/3, there exists R~/> 3 such that z~<a~< ~ ] for all R >/R~. Also, 
pR...< 1 for all R. Using these estimates and the Berry-Esseen theorem ~ 
and setting ~ to be the standard normal distribution function, we can find 
mo~> 1 such that for all x~Ao,  m>~mo, and R>~R~, 

fK-x h ( -X'o 
P[x~ + S~(m) ~ (0, K] ] >1 �9 \aRm i/2} - ~ \aRm'/2] 

K 48 
/> 2(nrn)l/2 -- ml/2/> m-1/2 

,0,, 

By a tightness argument, there is a constant yo>O such that for all 
y e [0, K] and all R/> 3, 

P[  y + S~(2K) e (1/2, 3/2] ]/> Yo (16) 

Therefore, there exists y~ > 0 such that for all R >i R~, 

P[xo + SR(m) ~ A i ] >>- P[x~ + S~(m - 2K) ~ [0, K ] ]  • Y0 

/> yo(rn - 2 K )  - 1/2 

>/ y l m -I/2 f o r  x o e A  o, m>~3K (17) 

Again using tightness, one sees P[xo + S`'(m)~ A l] is uniformly bounded 
away from zero on {x o ~ Ao, R/> 3, 1 ~< m < 3K}, and so with a change of 
constant, the lower bound (17) holds over all m/> 1, as desired. | 

Before giving details, we sketch the proof of Theorem 1. Fix e > 0. By 
Lemma 1 we can find m l so large that for any large R, if Fj denotes the 
event that S R ( i m l ) E A  i for i =  1,2 ..... j, then P[Fj] />(1-e)  j"', uniformly 
in j. Now fix rn~ also. The conditional probability, given Fj, that the 
random walk (SR(1) ..... SR(jmj)) is self-avoiding can be made to exceed 
(1 - e )  j"' (uniformly in j )  by making R big. This is because the occurrence 
o fF :  ensures that only pieces of the path SR(n)and SR(m) with In-m[ <~ 
4m~ can possibly intersect { consider the distance between SR(rn, [ re~m, ]) 
and SR(m~[n/m, ])}, and when R is very big, any two individual pieces are 
highly unlikely to intersect. The two lower bounds together imply that for 
large R, the path S`'(n), l<.n<~jrn~, is self-avoiding with probability 
exceeding (1 - 2 e ) / ' t  (uniformly in j).  This translates into a lower bound of 
kR(l -- 2e) on p(ff`'). The proof of Theorem 2 is more involved, but uses a 
similar idea. 
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Proof of Theorem 1. It suffices to prove the second inequality in (7). 
Define the function 

f~(e):=(2/e)log(1/e), e > 0  (18) 

Since we took 7~< 1 in Lemma 1, the function (yX-I/2) I/x is increasing 
in x on x~>3. There exists Co>0, with f~(eo)>~3, such that if O<e<~eo, 
then 

(yx-l/2)l/X>l--e if x>>.[f~(e)] (19) 

Now fix ee (0 ,  Co) and set m~ := [ f t (e ) ] ,  the integer part of fl(e). 
For j = 0 .  l, 2 ..... let A/be  as in Lemma 1, and define the events 

L/= L i(R) := { SR(jm,) ~ Aj} 

Mj=Mj(R) := {SR(m)4:SR(n) for O<~m<n<~jm,} 

H~ = H/(R) := Lj(R) c~ Mj(R) (20) 

We estimate the probabilities of these events. By Lemma 1, 

[ ~ ] -]/2 R>~R, (21) P L.i+I(R) Hi(R) >>.2ym I , 
i = 1  

Let R>~R~, j~> 1. Suppose that L~ ..... L/a l l  occur, and that for some 
n with O<~n<jml we have IISR(n)--SR(jml)ll<~ml. Write n=rml+s 
with r , s ~ Z ,  0~<r< j ,  and 0~<s<m~. By the triangle inequality, 
IlSR(rmt)--SR(jml)H <.2ml, so by the assumption that L r and L/ occur, 
( j - r - l )<~2ml ,  i.e., the total thickness of the slabs A; lying strictly 
between SR(rm l) and SR(jm~) is at most 2m I. Therefore, j-r<~ 
2ml + 1 ~< 3ml, and so jml - n  <~ 3m 2. Therefore, 

P[card{n<jm,: IISR(n)-SR(jm,)II<~mi} <<.3m 2 A L i ] = I  (22) 
i = l  

For jm~ < n ~ < ( j +  l)m] and z~Za/R, the probability that SR(n)=z, 
conditional on the history Of the walk up to time n - 1, is bounded above 
by 1/kR for IIz--SR(jml)ll <~m] and by 0 for other z. So by (22), the com- 
plement M;+ ~(R) satisfies 

Set 

R2(e ) := (41y)l/d(f~(e))7/(2d)= (41y)l/a((2/e) log(I/e)) 7/(2a) (24) 
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For  our  choice of  norm,  kR/> (2[R])d~ > R d for R > 1. So 

L I ..] i = 1  

By (21) and (25), for R>--R2(e) we have 

P[Hj+,(R)] N H,(R)]>_.2ymT'n-ym~ -'/2 (26) 
i = 1  

Since the event ('1~=~ H~(R) implies that  the r andom walk Sn is self- 
avoiding up to time jml ,  we have by induction that  for R/> R2(e), 

cj.,,( fqR) >~ p [ ] 
i~=, Hi(R) >1 (yrni-*/2) -/, j~> 1 (27) 

By (19), this implies that 

(cj,,,(~R))'l(J"")>~kR(ym~l/2)J/"~>~kR(l --e), j>~ l (28) 

Taking j--+ oo, we obtain 

/~(ffR) ~> kR(1 --e) ,  R>IR2(e) (29) 

Now R2(e) is a one-to-one function ore.  Set e(R) to be its inverse. Then for 
suitable constants c and c', for all R >1 R2(eo), 

e(R) ~ cR -2a/7 log R <~ c'k ~ 2/7 log kn (30) 

Using (29), we have for R>~R2(eo) that 

c k  R log(kR) II /I((#R) ~>k~(1 - e (R) )  >>-kR-- ' 5/7 

Proof of  Theorem 2. First we write down a stronger version of 
Eq. (5). By the definition (4) of  b,,(k) and Stirling's formula, one can check 
that  there are constants  c < c' such that  for all n >/1 and k/> 2, 

(cn - x/2)u,, << (b,,(k))t/,,/r(k) <~ (c'n - 3/2) u,, (31) 

By the first of  these inequalities, there exists e~ e (0, %]  such that  if we fix 
e e  (0, e , ]  and set m I = [(2/e) log( l /e ) ]  as before, then 

(b,,,(k))J/">...r(k)(1-e) for all k~>2 (32) 

We can identify nodes of  the complete k-ary tree ~k with words 
a~ ... a,, from the alphabet  { 1 ..... k}.(3) The letter a~ tells us which branch to 
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take at depth i when traveling down from the root of ~ to the node 
a~...an. The root of ~ is represented by the empty word ~ .  Given any 
word (node) w of ~ ,  let [w[ denote the depth of w, i.e., the number of 
letters in w. Also, let Ok,(w) denote the set of all subtrees 0 of ~ such that 
(i) 0 has n edges, (ii) w is a node of 0, and (iii) [w[ ~< [w'l for all nodes w' 
of 0 (i.e., 0 is rooted at w). For any node w of ~ the cardinality of Ok,(w) 
is b,(k) as given by (4). 

Choose an ordering on the sites of ff~ joined to 0, i.e., write {z e Zd/R: 
0<[[z][~<l} as {Z~,...,ZkR}. Define a mapping F of ~R onto Zd/R by 
F(J~) = 0 and 

F(al-"an)=za~+ " -  +za,  (33) 

This induces a mapping (also denoted F) from subtrees of ~ R to connected 
subgraphs (not always trees) of ff~. The restriction of F to subtrees of MR 
which have the empty word as their root and which are mapped by F to 
trees in f#~ is one-to-one. 

Define a random algorithm as follows. Let w(0) denote the empty 
word ~ ,  i.e., the root of ~ , .  The first step of the algorithm is to let Uj be 
a subtree of ~ chosen randomly from O~(w(0)). Let q i : =  max .... v, ([wl) 
be the depth of U~. Then let w( 1 ) be chosen uniformly at random from the 
set of nodes w of U~ with Iw[ =q~ (the set of nodes of maximal depth in 
U~), and let X~ := F(w(l )). We shall deem the first step to be a "success" 
if (i) the image F(U~) of U~ under F is a tree in fg~, and (ii) X~ EA~. 

Subsequent steps in the algorithm are defined inductively as follows. 
Assume steps 1 to j havbe been successful; there will then be defined a 
word w(j) of ~R with X/ :=  F(w(j))~ A/. We then define the ( j +  l)th step 
as follows. Let U/+ ~ be a subtree of ~R chosen at random from O~Rt(w(j)) 
[a set of cardinality b,,,(kR)]. Let q/+, :=maXw,~§  [w(j)[) be the 
depth of U/+t (so, clearly, qj+~< rn~). Let w(j+ 1) be chosen uniformly at 
random from the set of nodes w of U/+I with [wl-[w(j)[=qj+l. Let 
Xj+ ~:= F(w/+ ~). Deem the ( j +  1)th step to be a "success" if (i) the image 
/7( U/+ ,) of U/+ i in ~#~ is a tree, (ii) F( U/+ i) has no common vertices with 
any of F(U1) ..... F(Uj), except for w(j), and (iii) Xj+ 1E A/+ i- 

Let Lj denote the event { X/~ A/}. Let Mj denote the event that the 
image under F of the tree 1.){=, Ui is a tree, i.e., no two sites of [){= ~ Ui are 
mapped by F to the same site of ff~. Finally, define the event Hj'. := L~ ~ Mj 
(these events also depend on R). Given success up to step j, the event Hi+ 
is equivalent to success at step j + 1, and we now estimate the probability 
of success. 

Suppose steps 1 to j are successful. Conditional on the identities of 
U~ ..... U/and on the value of qg+ i, the path from F(X/) to F(X/+ 1) traced 
out by the image under F of the path along ~ s  from w(j) to w(j+ 1) is 
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equally likely to be any of the possible q/+ l-step random walk paths in ff,~ 
starting from X/(which lies in the slab A/). By Lemma 1, since q/+ t ~<rn~, 

,34, Lj.+l H" >~2ym I , 
i = 1  

We now turn to Mj.+ t. By a similar argument to the one which led to 
(23) in the proof of Theorem 1 (we omit details this time), 

P L  j+l i=t const rn~/kR 

<<.yrn~ ~/2 if R>~ Rs(e) (35) 

where for some suitably chosen constant c, 

R~ = Rs(e) := c((l/e) log(I/e)) 7/2a (36) 

Combining (35) with (34), we have a lower bound of ym~ -~/2 for the 
probability of success at step j +  l, given success at earlier steps. By 
induction, 

P I N  H'l>~(yrnTt/2)-i forall R>~Rs, j>~l (37) 
t - i =  l 

Now, each successful sequence U~,..., U~ determines a tree 
~ : =  J t (3i=1 F(Ui) in GR with jm t edges. Given ~, one can recover 
Ut, 02 ..... Vy as follows. Let 0 be the (unique) subtree of ~R such that 
F (0)  = ~. Take the "trunk" of 0 to be the longest path along 0 starting 
at the root, then cut the trunk at j -  1 points so as to divide 0 into j sub- 
trees, each with m~ edges. These subtrees are U~ ..... Uj. Therefore, no two 
distinct successful sequences can give rise to the same tree ~, and the 
number of successful sequences (U, ..... Uy) is at most tj,,,(GR). 

Since at each step, the tree U/is chosen at random from a set of car- 
dinality b,,,(kR) [with further randomness due to the choice of w(j)],  the 
probability of a particular successful sequence U] ..... Uj is at most 
(b,,,(kR))-/. Therefore for all j and R i> R3, 

J 
( bp, l( k R) ) -J l yml( ~R) ~ P Ii~= l H" l >~ ( ym l l/2) j (38) 

By (32) and (19), this implies 

(t/,,,(ffR))'/~J=')>~ (1 - 2 e )  r(kR) (39) 
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The proof is completed by a repetition of the argument following Eq. (28) 
in the proof of Theorem 1, since R3(e) differs from R2(e) only by a multi- 
plicative constant. | 

Proof of Theorem 3. For x e ~d, let B(x) denote the II" II unit ball 
centered at x. Let (S'R(m)) denote the same random walk as (SR(m)) given 
by (13), except that for S~, steps of 0 are to be allowed in the walk, i.e., 
set S~(m):=~j"=,  V'R(i), with V'R(i) independent and uniform over 
{z~Zd/R: Ilzll ~< 1}. The point of this is that for d >  1 the components of 
S'R(m) are independent. 

The statement of Lemma 1 still holds with SR replaced by S~ and 
Aj+, replaced by Aj in (15). So the following lower bound holds for d =  1, 
and then for all d by independence of components: 

P[S'R(m)~B(O)]>~2hdm -d/2, R>~R~, m>>,l (40) 

where 2ha := (2)')d>0. This trickery would not work if II �9 II were not the 
L~'-norm, but (40) should still be true (with a suitable ha) for other norms. 

For j>_-0, let Ej=Ej(R) denote the event that S'R(m)v~S'R(n) for all 
distinct m, ne  {0, 1.2 ..... j}. Then 

P[E~+, I Ej] = ( k R +  1)- '  

= ( k n + l )  -1 

>~(kR+ 1) - l  

= ( k R +  1) - l  

Let n ~> O, and set 

E[ card { i <~ j: S'R( i) ~ B( S'R(j) ) } [ Ej] 

( 1 +  ;=,~' (P[{S'R(j-i)~B(S'R(j))}np[Ej] Ej].)) 

J 

( P[ S'R(j- i) ~ B( S'R(j) ) ] - P[ E~] ) 
i = l  

J 

(P[S'R(i) e B(0)] - P[ E; ] )  (41) 
i = 1  

yl2 + d/2 I/d 

Then for R >/R4 and j ~< n, 

P[ E) ] <~ n2/kn <~ ha n -a/2 (43) 

Assume n is big enough so that R 4 exceeds the R~ of Lemma I. By (41), 
(40), and (43), there exists a constant c such that for all R/> R 4 and j~< n, 

J 

P[E~+~ IEj]~>(I +kR) -~ ~ hai-a/2>~ck~'gd(j) (44) 
i = 1  
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where we set ga(x) = x 1/2 for d =  1 and ga(x) = logx for d =  2. Thus 

P[Ej+t I Ej] ~<exp[ -ck~tha(j)] ,  j < n  (45) 

By induction, 

(kR+I)-"c.(NR)=P[E.]<~exp --ckR I ~ ga(J) (46) 
j = l  

Therefore by ( 1 ), for R = R4(n, d), 

# ( ~ )  ~< c,,(fr '/" 

<~(k,+ l ) e x p l - c k R ' ( l / n ) " ~ '  
j = l  

~< k R exp(k ~- i ) exp [ - const • k ~ t ga(n ) ] 

~<kR[1 -const•  [using (42)]  (47) 

Since we set R = R 4 , by (42) we have n = const • R 2a/~4+a). Therefore (47) 
implies the bounds (10) and (11). II 

3. OTHER MODELS 

3.1. Lattice Animals 

A lattice animal in c~ is a finite connected subgraph of ft. Let a,,(ff) 
denote the number  of  lattice animals in ff with n edges and with the origin 
as a vertex. Again by using supermultiplicativity, (~3) one can show that  the 
limit 2,(f9) := lim,,_ ~(a,(~)) TM exists. Clearly, a,,(f~) >~ t,(~). Also, by an 
argument  in Klarner,  I]3) 2~(f#)~<r(k(ff)). Therefore, the statement of 
Theorem 2 still holds with 2(fiR) replaced by 2a(a3R). 

3.2. Models with Excluded Volume Along Bonds 

When the typical step size of  a self-avoiding walk or a tree on the sites 
of Z d is large (as in the spread-out  limit), it might be considered more 
realistic to have an excluded volume effect not only at the sites visited by 
the walk or tree, but also near  the line segments joining successive sites. 
This can be done via the following models. 

Given a sequence So ..... S ,  in ~d,  let ~ denote the line segment from 
St_ l to St, i.e., let ~ := {otSi_ ~ + ( 1 - a)Si :  0 ~< 0t ~< 1 }. For  r/> 0 let c~,(f#) 
denote the number  of  fg-random walk paths 0 = S o, S~, S 2 ..... S,, such that 
for I <~i<j<~n, dist(Sj, ~ ) > r  and dist(Si_~, ~ ) > r .  

822/77/1-2-2 
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This counts the number of random walk paths (chains) where each 
vertex avoids the r-neighborhood of edges other than its immediate 
neighbors in the chain. A stronger condition is to make each edge avoid the 
r-neighborhood of edges other than its immediate neighbors in the chain. 
A count of such paths is given by O,~(c~), defined to be the number of 
fq-random walk paths O = S o ,  S ~ , S 2  ..... S,, such that for I i - j l > l ,  
dist(~, g,.) > r. 

The usual submultiplicative inequalities still hold for these quantities, 
implying existence of the limits /~r(f#):=lim(eT,(ff)) t/" and /it(c-#):= 
lim(~,~,(ff)) ~/'. The proof of Theorem 1 can be adapted to give us 

/tr(c-gR)~kR as R ~ o o ,  r~>0, d~>2 (48) 

It is clear that (48) will not hold for d =  I. On the other hand, for d~>2, 
in the rescaled model on ff~ the region to be avoided at the (n + 1)th step 
is the union of tubes of width r /R around the (rescaled) edges 8'i, i<~n, 
which is small. In addition, the edge g',,+, must avoid the r/kR- 
neighborhoods of the sites visited earlier, but the angle subtended by these 
regions is also small. 

For the case of paths counted by 6~,(ff), in d = 2  an edge can be 
hemmed in by a fixed, finite number of earlier edges, no matter how thin 
the exclusion region around them is. But for d~> 3 this cannot happen, and 
one can show that for any fixed r i> 0, 

fir(f~R)~kR as R ~  oo, d~>3 (49) 

Analogous results to (48) and (49) can be obtained for trees. Each tree 
embedded in f# may be viewed as a collection of sites - e Z a and edges g 
of f#. In an obvious way, one can identify each site with a point in ~d  and 
each edge with a line segment in ~?d. Let t,~,(~) denote the number of trees 
0 embedded in (~, with n edges and with 0 e 0, such that dist(z, ~)  > r for 
every site - ~  0 and edge ~ e 0 with z not an endpoint of ~. Let i~,(f#) denote 
the number of trees 0 embedded in c~, with n edges and with 0 e 0, such 
that dist(g, g ' )  > r for every pair of edges g and ~ '  of 0 having no common 
endpoint. 

The limits 2r(ff):=lim(t~((#)) ~/" and 3.r(ff):=lim(~,(ff)) '/" exist, at 
least when (q = C~R with R > r + 1. The analogous result to (48) is 

).r(r~R)~r(kR) a s  R ~ o o ,  r>~0, d~>2 (50) 

while the analogous result to (49) is 

~.r(cSR),,~r(kR) as R--*oo, r~>0, d>_-3 (51) 
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